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Modified ART 2A Growing Network Capable of
Generating a Fixed Number of Nodes
Ji He, Member, IEEE, Ah-Hwee Tan, and Chew-Lim Tan, Senior Member, IEEE

Abstract—This paper introduces the Adaptive Resonance
Theory under Constraint (ART-C 2A) learning paradigm based
on ART 2A, which is capable of generating a user-defined number
of recognition nodes through online estimation of an appropriate
vigilance threshold. Empirical experiments compare the cluster
validity and the learning efficiency of ART-C 2A with those of ART
2A, as well as three closely related clustering methods, namely
online K-Means, batch K-Means, and SOM, in a quantitative
manner. Besides retaining the online cluster creation capability
of ART 2A, ART-C 2A gives the alternative clustering solution,
which allows a direct control on the number of output clusters
generated by the self-organizing process.

Index Terms—Adaptive Resonance Theory (ART), clustering,
constraint learning, neural networks.

I. INTRODUCTION

ADAPTIVE Resonance Theory (ART) [1] is a family of
neural networks that develop stable recognition cate-

gories (clusters) by self-organization in response to arbitrary
sequences of input patterns. Through dynamic creation of
recognition categories for encoding distinct input samples,
an ART module is capable of self-adjusting the scale of its
recognition field, in terms of the number of committed nodes,
with respect to the complexity of the problem domain. Its fast
commitment mechanism and capability of learning at moderate
speed guarantees a high efficiency. However, given a data
set, the scale of ART recognition field (i.e., the number of
output clusters) depends on a global threshold parameter called
vigilance. While in principle, one could control ART’s recog-
nition representation by fine tuning the vigilance parameter,
in practice, suggesting an appropriate vigilance value requires
prior knowledge on the scale and the distribution of the problem
data set, which is unlikely to be available.

This paper proposes a novel ART learning paradigm named
ART-C (Adaptive Resonance Theory under Constraint). Specif-
ically this paper introduces ART-C 2A based on ART 2A [2],
which contains several improvements over its predecessor pre-
viously introduced by He et al. [3]. Our aim is to combine the
neuron initialization and the online clustering capabilities of
ART 2A with the predictability in allowing a direct control on
the number of the output clusters. This capability is achieved
by a constraint reset mechanism in ART-C 2A that adaptively
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Fig. 1. The ART architecture.

adjusts the global vigilance threshold of the system and reorga-
nizes the category representation in response to an intuitive con-
straint. Given a specific data set, the constraint reset mechanism
does not affect the network’s learning when the proper vigilance
is accurately estimated. Hence ART-C 2A’s output is practically
comparable to that of ART 2A using a preestimated vigilance
value which intends to output the same number of clusters over
the data set.

The rest of the paper is organized as follows. Section II
provides a brief review of the ART 2A network and analyzes its
key learning characteristics which motivate our work. Section III
introduces and analyzes the ART-C 2A learning paradigm.
Section IV compares ART-C 2A with related work. Section V
reports our benchmark on the performance of ART-C 2A by
comparing it with that of ART 2A, as well as three closely related
clustering methods, namely online K-Means, batch K-Means,
and SOM, and extends our discussions on the experimental
results. Section VI summarizes our concluding remarks.

II. ANALYSIS OF THE ART 2A NETWORK

There exist a large variety of ART networks in the litera-
ture. Our review focuses on the ART 2A network [2] which is
closely related to our work. An ART 2A network mainly fol-
lows the conventional ART architecture [1], which consists of
three layers depicted in Fig. 1: the input layer , the compar-
ison layer , and the recognition layer . The input layer

receives and stores the input patterns. Neurons in the input
layer and comparison layer are one-to-one connected with
hard-coded links, which corresponds to a normalization prepro-
cessing to prevent category proliferation. The comparison layer

stores the short-term memory for the current input pattern
while the recognition layer stores the prototypes of recog-
nition categories (clusters) as the long-term memory. In Car-
penter et al. original prototype [2], the layer initially con-
tains a number of so-called uncommitted nodes, which one by
one will conditionally get committed upon input presentation.
This however may give a wrong impression that ART uses “a
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fixed number of output nodes which limit the number of clus-
ters that can be produced” [4]. As an alternative interpretation,
a number of subsequent studies (such as [5], [6]) refer the
layer initially as a null set (i.e., contains no node) which dynam-
ically grows by creating new recognition categories (committed
nodes) using distinct inputs. We follow the later interpretation
in the rest of this paper, as it highlights ART’s capability of ex-
panding the scale of its recognition field indefinitely.

The ART network follows a winner-take-all competitive
learning process. Learning of the conventional ART network
involves the modification of the weighted bottom-up (feed-for-
ward) and top-down (feed-backward) connections between
and . The interactions between and are controlled by
the orienting subsystem using a vigilance threshold . Such a
learning process is simplified in ART 2A by using a feed-for-
ward only connection between and , and a symmetric
dot product as the similarity measure in the category choice
function and match function. The learning process of ART 2A
network is summarized.

Parameters
The ART 2A dynamics are determined by the vigilance pa-

rameter and the learning rate .
Network initialization
The recognition layer is initialized with the null set (i.e.,

contains no category).
Input normalization
Given the nonzero input vector presented to , the links

between and form a built-in Euclidean normalization ac-
cording to

(1)

where the Euclidean normalization function is given by

(2)

Category choice
Given an input vector , for each node , the choice

function is defined by

(3)

where is the weight vector of node . The system is said to
make a choice when at most one node can become active.
The choice is indexed at where

(4)

Resonance or reset
Mismatch reset happens when the network fails to locate a

winner category (when the first input is presented), or when the
choice score does not reach the vigilance value

(5)

during which a new category is created by copying as its
weight vector

(6)

Otherwise the network is said to reach resonance, during which
learning ensues, as defined.

Learning
Once the search ends and a resonance is achieved, the atten-

tional subsystem updates the weight vector according to

(7)

The minor differences between the above and the original
ART 2A learning process proposed in [2] deserve some explana-
tions herein. In Carpenter et al. version, a match function, which
uses the dot product as well, is used in the resonance checking
step. We consolidate the choice function and match function into
one, as they are essentially equivalent to each other. In [2], a
small threshold is used to cut off the attribute value of the
input vector such that if , is reset to be 0. Similar
cut-off is applied on the weight vector as well during learning.
This is claimed to “distinguish features that are irrelevant in
given categories” [2]. As such, once an attribute value of the
weight vector drops below the threshold, the value will remain
zero in the further learning. However, suggesting an appropriate
“irrelevance” threshold value requires prior knowledge and may
be quite subjective. In addition, most clustering systems assume
there is an effective feature selection preprocessing and all fea-
tures presented to the system are equally important. Therefore
we follow a common practice to disable this threshold for sim-
plicity of analysis. Carpenter et al. also use a small constant
such that the so-called uncommitted nodes are enforced to have
a nominal, minor “similarity” of with the input pattern.
It follows that in some simulations, even when , some
uncommitted nodes may be activated and the system may gen-
erate a few categories [2]. Readers should note this is practically
equivalent to the result produced by the paradigm we summa-
rized above, using a very small value.

The network’s learning in (7) contains a convex combination
of the input and the existing category. The Euclidean normal-
ization in (1) and (7) limits the learning on a unit hypersphere
to avoid category proliferation. Under this condition, the choice
function in (3) is equivalent to the cosine similarity between the
input and the recognition category. That is

(8)

where is the angle between vector and . The network’s
mismatch reset mechanism brings interesting characteristics
to ART 2A’s learning paradigm. The vigilance threshold
guards whether an input will be incorporated into its most
similar recognition category, or will be used to generate a new
category. Specifically, this threshold forms a circular decision
boundary with a radius of around the weight vector
of each category.1 When the Euclidean distance between two
nearest categories is less than (i.e., there is an
overlap between the two corresponding circular regions), the
partitioning boundary between these two categories is given by
their perpendicular bisector on the hypersphere (Fig. 2).

1Given A � B = � and kAk = kBk = 1, kA � Bk =
kAk + kBk � 2A �B = 2(1� �).
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Fig. 2. The decision boundaries of the ART 2A network (dashed lines), the
committed region (gray), and the uncommitted region (white) being viewed on
the unit hypersphere. Cross markers (+) identify the weights of the recognition
categories. Vector quantization is done by relaxing the decision boundaries with
� = 0 (dot-dashed lines) after the network convergence on the input sequence.

Mismatch reset of the network occurs if an input pattern
falls outside of the committed region, i.e., the combination of
circular regions around all categories (gray areas in Fig. 2).
Learning of such an input is done by creating a new category
with the input, which turns a new circular region around it
into a committed sub-region. This fast commitment paradigm
guarantees stable encoding of new distinct inputs. We would
highlight that this characteristic particularly reflects the plas-
ticity of the network.

Network resonance only happens if the input pattern falls
into the committed region. Learning activity of the network in
the committed region, is closely related to the naive competi-
tive learning paradigm. This close relationship makes ART 2A,
like other clustering algorithms in the same category, capable of
serving as a vector quantizer. The interesting point is that, the
resonance check of the network provides an upper bound for
the variance of the newly learnt cluster prototype from

, specifically . As such, the
network is capable of learning at either slow or intermediate
speed without causing cluster oscillation. Combination of this
fast learning capability with the fast commitment mechanism
ensures ART 2A’s capability of achieving stable encoding of
input sequences with very few learning iterations in practice.

With the analysis above, it is understandable that the vigi-
lance threshold affects the number of ART 2A recognition cat-
egories generated on a specific input sequence in a major way.
Specifically, causes each unique input to be encoded as
one separate category, whereas causes all inputs to be
encoded into the same category.

This characteristics of ART 2A motivates our study of the
ART-C 2A learning paradigm, which dynamically adjusts the
vigilance parameter during its learning in respect to a user-de-
fined constraint on the category representation, in terms of the
number of recognition categories. In the Section III, we give the
details of the ART-C 2A paradigm.

III. THE ART-C 2A LEARNING PARADIGM

Unlike a conventional ART 2A network that mainly controls
its learning activity with a vigilance threshold , ART-C 2A’s
learning is mainly guided by an intuitive constraint on the
maximal number of recognition categories in the layer. The
solution introduces an extra constraint reset mechanism to the
ART 2A network, which self-adjusts the vigilance threshold of
the network through an adaptive estimation of the input distribu-
tion in response to the constraint . The dynamically adjusted
vigilance threshold in turn drives the learning activities to satisfy
the user-defined constraint. The ART-C 2A learning paradigm
is introduced below.

Parameters
The ART-C 2A dynamics are determined by the constraint

on the number of recognition categories and the learning rate
.

Network initialization
The recognition layer is initialized with the null set . The

vigilance for the orienting subsystem is initialized with 1.0.
Learning of each input representation
Learning of each input presentation follows the ART 2A

learning paradigm. This includes the same built-in input
normalization, category choice, resonance check, and learning
stages.

Constraint checking
Constraint checking is performed after the learning of each

input representation by comparing the number of existing recog-
nition categories with the predefined constraint

if
otherwise.

(9)

With , the constraint is said to be satisfied, upon which
the network carries on to learn the next input representation.
Otherwise, constraint reset occurs.

Constraint reset
Constraint reset reorganizes the recognition categories in the
layer toward the satisfaction of the constraint and adjusts the

value based on the current category distribution. The process
is introduced as follows.

1) Search of nearest category pair: For each category pair
in the layer, their similarity is defined by the dot product
of their corresponding weights and such that

(10)

where is the angle between and , given
. The nearest neighbor of each category , indexed

as , is the category that has the maximal similarity with

(11)

The nearest neighbor similarity of category , marked as
then refers to the similarity between category and its

nearest neighbor

(12)
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The nearest category pair, indexed as , is identified
by the category that has the maximal nearest neighbor
similarity to its nearest neighbor

(13)

2) Adjustment of the vigilance: The vigilance value for
subsequent learning is decreased according to

(14)

thus, .
3) Merging of the nearest category pair: Merging of the nearest

category pair is done by inserting a new category
with the weight vector as the mean of these two categories

(15)

where is the Euclidean normalization as given by (2). In
addition, the categories and are deleted from the recog-
nition layer after the creation of the new category.

Each constraint reset cycle decreases the number of recog-
nition categories in by one. Theoretically the constraint
checking and constraint reset processes should be repeated till
the network satisfies the constraint (i.e., ). However,
considering the nature of the ART 2A learning is to create at
most one new recognition category for encoding of each input,
constraint reset practically occurs only when .
Therefore constraint reset happens at most once on each input
representation, after which the number of recognition categories
in the layer is decreased to . It is also understandable
that constraint reset can only happen right after a mismatch
reset, which is the direct cause that increases the number of
recognition categories from to .

Computational complexity of the network
The computational complexity of the conventional ART 2A

network has been widely discussed in the literature. We hereby
discuss the additional computational cost introduced by the
ART-C 2A’s constraint reset process. Apparently the cost of
this process is dominated by the calculation of the pairwise
similarities among the existing recognition categories,
as given by (10). The computation cost can be estimated as

, in terms of the number of dot-product calculations.
Compared with the category choice process, which is estimated
as , constraint reset is computationally intensive. When
is large, this operation could be time consuming. However, one
should note that constraint reset happens only conditionally,
depending on the distributions of the input data and the recog-
nition categories, as well as the vigilance . The decreasing
vigilance and category redistribution reduce the possibility of
constraint reset in subsequent learning. When the input data are
reasonably densely distributed and the number of input data
satisfies , the additional cost of the constraint reset
process can be ignored.

IV. RELATED WORK

The idea of controlling the category representation of an ART
network using varying vigilance values has been investigated

in the literature. The varying vigilance plays an essential role
in the supervised ARTMAP networks [7]. Most closely related
to the ART-C 2A learning paradigm may be the HART mod-
ular designs (HART-J and HART-S) [5]. HART generates hi-
erarchical representation of the input sequence. Learning ac-
tivities in various layers of the hierarchy are guarded with dif-
ferent values and produce category representation of the same
input sequence with varying details, either from fine to coarse
representation (HART-J) or from coarse to fine representation
(HART-S). HART however lacks the capability of producing a
predefined number of categories in any layer, as the modular
design presets a vigilance value for each layer and limits the
learning activities in each layer strictly like a conventional ART.

One key idea employed in ART-C 2A is the redistribution
of the representation categories during constraint reset through
merging of categories. A number of hierarchical agglomera-
tive clustering algorithms, such as UPGMA [8] and neighbor-
joining [9], apply a similar paradigm. Hierarchical agglomer-
ative clustering algorithms typically represent input sam-
ples as reference clusters. Each clustering cycle identifies the
most similar pair of clusters and merges them. The process may
repeat until there is only one cluster left. While they are able to
generate a predefined number of clusters over input sam-
ples, they are notably computational intensive in maintaining
the pair-wise similarity matrix as typically [10]–[12].
The advantage of ART-C 2A over this class of algorithms lies
in its combination of competitive learning of individual inputs
with the calculation of pair-wise category similarities. While on-
line learning of individual inputs maintains a high efficiency,
merging of the nearest category pair in ART-C 2A enables a
quick redistribution of recognition categories, with a notably
lower computational cost.

V. EXPERIMENTS

Our experiments study the characteristics of ART-C 2A by
comparing it with the conventional ART 2A learning, as well as
three alternative clustering algorithms, namely online K-Means
[13], batch K-Means [13] and SOM [14]. All these methods
have been extensively studied and widely applied in the lit-
erature. Among them, ART-C 2A, ART 2A, online K-Means
(or naive competitive learning in some literatures), and SOM
share the common competitive learning principle. On various
real-life data sets, our experiments evaluate the cluster validity
and learning efficiency of these five algorithms, using various
quantitative evaluation measures.

A. Cluster Validity Measures

Our experiments adopted two sets of cluster validity measures
summarized below. More discussions on these measures can be
found in [15].

1) Cluster Validity Measures Based on Cluster Distribu-
tion: Since the nature of clustering is to reorganize the input
samples such that data points in the same cluster are more
similar2 to each other than to points in a different cluster, it
is a natural way to evaluate the intracluster homogeneity and

2The similarity measure is chosen subjectively based on the system’s ability
to create “interesting” clusters.
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the intercluster separation of the clustering output in a global
fashion.

Cluster compactness
The cluster compactness measure is based on the generalized

definition of the deviation of a data set given by

(16)

where is a distance metric between two vectors and
that reflects their dissimilarity, is the number of members

in , and is the mean of . A smaller devi-
ation indicates a higher homogeneity of the vectors in the data
set, in terms of the distance measure . In particular, when

is one-dimensional (1-D) and is the Euclidean distance,
becomes the standard deviation of the data set .

The cluster compactness for the output clusters
generated by a system is then defined as

dev
dev

(17)

where is the number of clusters generated on the data set ,
is the deviation of the cluster , and is the

deviation of the data set .
Cluster separation
The cluster separation measure used here borrows the idea in

[16] and the clustering evaluation function introduced by [17].
The cluster separation of a clustering system’s output is defined
by

(18)

where is a Gaussian constant, is the number of clusters,
is the centroid of the cluster , and is the distance
between the centroid of and the centroid of .

Following a similar practice in [16], we combine the cluster
compactness and cluster separation measures into one for
the ease of evaluating the overall performance of a clustering
system. The combination, named overall cluster quality, is
defined as

(19)

where is the weight that balances cluster compact-
ness and cluster separation. For example, gives equal
weights to the two measures.

2) Cluster Validity Measures Based on Class Confor-
mity: This category of validity measures assumes that there
is a desirable distribution of the data set with which it is pos-
sible to perform a direct comparison of the clustering output.
Following the data distribution, one can assign a class label to
each data point. The target of the clustering system can then
be correspondingly interpreted as to replicate the underlying
class structure through unsupervised learning. In an optimal
clustering output, data points with the same class labels are
clustered into the same cluster and data points with different

class labels appear in different clusters. Two validity measures
based on class conformity are summarized later.

Cluster entropy
Boley [18] introduced an information entropy approach to

evaluate the quality of a set of clusters according to the orig-
inal class labels of the data points. For each cluster , a cluster
entropy is computed by

(20)

where is the number of the samples in cluster with
a predefined label and is the number
of samples in cluster . The overall cluster entropy is then
given by a weighted sum of the individual cluster entropies by

(21)

The cluster entropy reflects the quality of individual clusters
in terms of the homogeneity of the data points in a cluster. A
smaller value indicates a higher homogeneity. It, however, does
not measure the compactness of a clustering solution in terms
of the number of clusters generated. A clustering system that
generates many clusters would tend to have very low cluster
entropies but is not necessarily desirable. To counter this defi-
ciency, we use another entropy measure below to measure how
data points of the same class are represented by the various clus-
ters created.

Class entropy
For each class , a class entropy is computed by

(22)

where is the number of samples in cluster with a
predefined label and is the number of
the samples with class label . The overall class entropy is
then given by a weighted sum of individual class entropies by

(23)

Similar to the combination paradigm above, we define a com-
bined overall entropy measure to facilitate our comparison

(24)

where is the weight that balances the two measures.
It is understandable that for all six quality measures above, a

smaller score indicates a better performance.

B. Evaluation Session

All five clustering algorithms, namely ART-C 2A, ART 2A,
online K-Means, batch K-Means, and SOM, are implemented
in-house with C++ and share a common set of functions for
vector manipulation. K-Means (both online and batch versions)
and SOM utilized Euclidean distances. Their reference clus-
ters were initialized with random vectors that slightly perturbed
from the mean vector of the input set.
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SOM used a 2-D square map with corresponding square
topological neighborhood (resonance domain). Its neigh-
borhood size was initialized with half the total number of
nodes. Gaussian neighborhood function was used. Various
neighborhood shrinking strategies were tried prehand and the
Gaussian shrinking function, which produced slightly better
overall performance than others, was used. In addition, in each
set of experiments dealing with different data set and different
output map size, the Gaussian constants for these functions
were fine tuned in order to obtain an locally optimal output.3

The learning rates of ART-C 2A, ART 2A, online K-Means
and SOM were initialized with 0.05. We applied a simple linear
function for the learning rate fading such that the learning rate

if the network’s recognition accuracy reached
a threshold of 0.8. All five algorithms were said to reach con-
vergence if the cluster assignment for the input samples did not
show a relative change of 0.5%.

We utilized the Euclidean distance for the evaluation of
cluster compactness and cluster separation . This
makes the cluster compactness measure equivalent
to the average cluster scattering index used in Halkidi et al.
study [16]. as in (18) was used to simplify our
evaluation. On each data set, we evaluated the five algorithms
on a varying number of output clusters. To obtain a statistically
valid comparison, a batch of 10 experiments using the same pa-
rameters for each algorithm were conducted. Each experiment
randomly reshuffled the sequence of the input and trained the
system to converge. The mean and the standard deviation of
each evaluation measure over the 10 experiments are reported.
-test was used to evaluate the statistical significance of our

comparison observation when appropriate.
We note that the number of output clusters affects the score

of all the evaluation measures used in our experiments. Strictly,
two systems are not comparable if they work on different
number of output clusters. The difficulty in our experiments
is to suggest an appropriate value for ART 2A in order to
obtain a fixed number of output clusters over a specific input
sequence. To simplify our experiments, we manually tried
various values on one random input sequence, then used the
value which produced output clusters on this input sequence
in all 10 experiments. While on different input sequences the
actual number of ART 2A output clusters may slightly vary
from , we found the variance was within an acceptable level
that does not affect the validity of our comparison.

C. Gene Expression Data Sets

Our first batch of the experiments compared the performance
of these algorithms on two gene expression data sets, namely the
yeast cell cycle data set (YEAST)4 and the human hematopoi-
etic differentiation data set with features under mixed conditions
(HL60_U937_NB4_Jurkat).5

Following a common preprocessing procedure [19], a vari-
ance filter was used to eliminate the relatively constant gene ex-

3Detailed parameter settings are not reported due to page constraint.
4The YEAST data set is available via http://genomics.stanford.edu
5The HL60_U937_NB4_Jurkat data set is available via http://www-genome.

wi.mit.edu/cgi-bin/cancer/datasets.cgi

pressions. 1109 and 1423 gene expressions from the two data
sets, respectively, passed the filter. They were normalized using
the standard normal distribution with a mean of 0 and a stan-
dard variance of 1 within each observation panel [19]. The in-
termediate ninth condition of the YEAST data set was excluded
from our experiments for the ease of normalization. This prepro-
cessing, which produces the same input data sets for all five clus-
tering methods in our experiments, is done before the built-in
normalization of ART 2A and ART-C 2A, given in (1).

Both the two gene expression data sets are small scale, have
a small number of features, and are densely distributed. Prior
studies are capable of identifying a few number of expression
patterns on these data sets only. Therefore on each data set,
we set the target number of the output clusters to be relatively
small. Table I reports the five algorithms’ cluster validity mea-
sures based on cluster distribution, together with the number of
iterations to reach convergence and the CPU time costs, when

and , which correspond to a 3 3 and a 5 5
map in SOM, respectively.

In all four batches of experiments, the cluster validity mea-
sures produced by ART-C 2A, in terms of both cluster compact-
ness and cluster separation, were very similar to those of ART
2A. Specifically, -test did not suggest any significant difference
between our observations on each evaluation measure.

In terms of cluster compactness, the validity measures of
these five algorithms did not show significant differences on
the two data sets with . However, with , both
online K-Means and batch K-Means produced significantly
lower scores than the rest trio. In general, across these four
batches of observations, online K-Means and batch K-Means
slightly outperform ART-C 2A and ART 2A in terms of cluster
compactness. SOM did not seem to produce outstanding
performance compared to the other four algorithms. In terms
of cluster separation, the validity measures of both ART-C 2A
and ART 2A were significantly lower than those of the rest
trio. The difference among the latter three algorithms were not
significant in our experiments.

In terms of efficiency, ART-C 2A incurred slightly more com-
putational cost than ART 2A. With , the numbers of iter-
ations used by ART-C 2A and ART 2A were relatively close to
those of SOM and Online K-Means, which in turn were sig-
nificantly fewer than that of batch K-Means. With ,
both ART-C 2A and ART 2A showed a significantly higher ef-
ficiency than online K-Means, batch K-Means and SOM, in the
number of iterations as well as the CPU time cost.

D. Reuters-21 578 Text Document Collection

The Reuters-21 578 (REUTERS) text document collection6

was originally released for evaluation of text categorization
methods. The class labels available on each document enable
keyword feature selection and quality evaluation using class
conformity based measures. The training and testing documents
from the top 10 categories of the corpus were used in our exper-
iments. For the ease of our evaluation, documents with multiple
class labels were duplicated so that each copy was associated

6The REUTERS corpus is available via http://kdd.ics.uci.edu/databases/
reuters21578/reuters21578.html
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TABLE I
EXPERIMENTAL RESULTS FOR ART-C 2A, ART 2A, SOM, ONLINE K-MEANS, AND BATCH K-MEANS ON THE YEAST AND THE HL60_U937_NB4_JURKAT DATA

SETS, WHEN THE NUMBER OF CLUSTERS C WERE SET TO 9 AND 25. I , T , Cmp, Sep, AND Ocq INDICATE THE NUMBER OF LEARNING ITERATIONS, THE COST OF

TRAINING TIME (IN ms), CLUSTER COMPACTNESS, CLUSTER SEPARATION, AND OVERALL CLUSTER QUALITY, RESPECTIVELY. ALL VALUES ARE

SHOWN WITH THE MEAN AND THE STANDARD DEVIATION OVER TEN RUNS

with one class label accordingly. A bag-of-words represen-
tation of document features was adopted in our experiments.
The statistics [20] was employed as the ranking
metric for feature selection. 365 keywords that passed the
preset threshold were selected as the features. During
document feature extraction, the content of each document was
first represented as an in-document term frequency (TF) vector,
then processed using an inverse document frequency (IDF)
based term weighting method and subsequently Euclidean
normalized [20]. After removing null (i.e., all-zero) vectors, we
obtained a set of 9530 document vectors for our benchmark.

To obtain a better understanding of each algorithm’s learning
efficiency, we tested them on 10 subsets of the REUTERS data
set constructed as follows. Documents from each class were
evenly split into 10 folds. The th subset used in our experi-
ments contained document folds from each category.
In this way, all 10 subsets used in our experiments had nearly

identical document class distribution, while the number of data
samples in each subset varied from 957 to 9530.

In contrast to the two gene expression data sets, the
REUTERS data set is relatively high-dimensional, large-scale,
noisy, and sparsely distributed. Therefore, we did not expect
a cluster algorithm to replicate the exact 10 clusters corre-
sponding to the labeled classes in our experiments. Instead, we
tested the algorithms on each subset with , ,
and , corresponding to a 5 5, 7 7, and 9 9 map in
SOM, respectively. The comparative experiments with different

values showed very similar results. Experimental results with
are reported in Fig. 3. Cluster validity was measured

using both cluster distribution and class conformity.
It is interesting that all five algorithms produced rather con-

sistent cluster validity scores in response to the varying number
of input samples. This is probably due to the similar data dis-
tribution in each subset used in the experiments. In terms of
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Fig. 3. Experimental results for ART-C 2A, ART 2A, SOM, Online K-Means, and batch K-Means on the reuters-21 578 data set with 49 clusters. I and T
indicate the number of learning iterations and the cost of training time (ms), respectively. Sep, Cmp, and Ocq indicate cluster separation, cluster compactness,
and overall cluster quality, respectively. Enc, Enl, and Ens indicate cluster entropy, class entropy, and overall entropy, respectively. All values are shown with
the mean and the standard deviation over 10 runs.

cluster compactness , batch K-Means produced signifi-
cantly better scores than online K-Means and SOM in all the ex-
periments, while the latter two in turn performed slightly better
than ART-C 2A and ART 2A in most experiments. In terms
of cluster separation , all five algorithms performed quite
similarly in all experiments.

Using the set of validity measures based on class confor-
mity, ART-C 2A and ART 2A produced significantly higher
cluster entropy scores than those of online K-Means,
batch K-Means, and SOM, while the performance of the latter
three methods were quite close. As for class entropies , all
algorithms produced similar scores. Interestingly, these obser-
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vations generally harmonize with the comparable results using
the cluster distribution based measures.

In terms of efficiency, both ART-C 2A and ART 2A showed
a significantly higher efficiency than online K-Means by about
one time, which in turn was significantly faster than batch
K-Means and SOM in all experiments. This is reflected by both
the number of iterations and the CPU time cost.

E. Discussions

Our benchmark on the cluster validity of the five clustering
algorithms led to mixed results. Generally speaking, the
performance of ART-C 2A is quite comparable to that of ART
2A. Compared with online K-Means and batch K-Means, on
the gene expression data sets, ART-C 2A and ART 2A output
with comparable intra-cluster compactness and better inter-
cluster separation. While on the REUTERS data set, ART-C
2A and ART 2A output with worse intracluster compactness
and comparable intercluster separation, both reflected by the
cluster distribution based measures and class conformity based
measures.

As another large family of selforganizing neural networks,
SOM did not show notably outstanding performance over
others, even with the optimized parameter settings in our con-
trolled experiments. However, readers shall note the application
domain of SOM is mainly on topology preserving mapping and
visualization, rather than clustering.

Additionally, we must point out that the observations above
reflect the nature of clustering. As a matter of fact, the ill-posted
clustering problem “precludes an absolute judgement as to the
relative efficacy of all clustering techniques” [21].

We are particularly interested in the relatively high efficiency
of ART-C 2A and ART 2A reflected in our controlled exper-
iments. This may be due to their capabilities of dynamically
initializing the reference clusters using distinct input samples
through the network’s mismatch reset cycle. Mismatch reset en-
sures stable encoding of new samples through one scan. The
constraint reset process in ART-C 2A also serves to move cluster
centroids quickly from a high density area to a low density area,
with minor impact to the learning history. These factors guar-
antee the high efficiency of ART-C 2A, which is comparable to
that of ART 2A. However, when working with too few number
of output clusters, which corresponds to a very low vigilance
threshold, such an advantage is not notable in our experiments,
as both ART-C 2A and ART 2A work rather like the competi-
tive learning in this scenario.

Despite the advantage above, readers shall note that both
ART-C 2A and ART 2A have a built-in Euclidean normal-
ization on the input and the category representation in order
to avoid category proliferation. As such, the input vector
length information is ignored by the networks. This limits the
application of ART-C 2A and ART 2A to problems where the
input vector length information is not of critical importance.

VI. CONCLUSION

As our concluding remarks, the ART-C 2A learning paradigm
retains the efficient cluster creation capability of ART 2A, and
allows a user to directly control the number of the output clus-

ters by imposing a constraint on ART 2A’s category learning.
The constraint reset mechanism of ART-C 2A adaptively ad-
justs the network’s vigilance threshold which guides the net-
work’s learning and redistributes the recognition categories to
satisfy the constraint. As such, unlike a conventional ART 2A
module which requires prior knowledge in estimating an ap-
propriate vigilance parameter, the knowledge in estimating an
optimal number of clusters over the data set is required by an
ART-C 2A module. We consider this is a good alternative to the
conventional ART 2A module and is of great value for various
real-life applications. While this paper focuses on ART-C 2A,
which is based on ART 2A, the same idea may be applied to
other ART modules.
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